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D E S I G N  OF A T R A N S V E R S E L Y  L A Y E R E D  R O D  

OF M I N I M U M  W E I G H T  W I T H  STABILITY C O N S T R A I N T  

V. V. Alekhin and L. V. Baev UDC 539.3 

We consider a problem of synthesis of a transversely layered, axially compressed straight rod 
of minimum weight from a finite set of elastic homogeneous materials with specified constraint 
imposed on the critical buckli:~tg load. To describe the bending of the rod, we use the class','cal 
theory of beams based on the hypothesis of plane cross sections. The necessary optimality 
conditions are obtained, a computational algorithm is developed, and an example of calculation 
of the optimal rod is given. 

1. Formula t ion  of t he  P rob lem.  Let W be the set of k homogeneous isotropic materials. The 
problem is to synthesize a transversely layered rod of minimum weight with constrained critical buckling load 
applied to the rod. 

We consider a rod of length L and constant cross section S, which is compressed by an axial force P. 
Various types of boundary conditions such as hinged support, fixed ends, and others can be specified at the 
ends of the rod. We introduce the Cartesian coordinate system (x, y, z) with origin at the left end of the rod 
and the x axis directed along the rod, so that it coincides with the line of action of the force P (Fig. 1). The 
rod buckles in the (x, z) plane. 

Let a and p. be the parameters having the dimensions of stress and density. We introduce the following 
dimensionless variables (in what follows, the asterisk at the dimensionless quantities is omitted): 

x* = z /L ,  w* = w / L ,  E* = E/a ,  P* = PL2/aI ,  p* = p/p. ,  (1.1) 

where w(x) is the deflection of the rod, E(x) and p(x) are Young's modulus and the density of the layer 
material, I is the moment of inertia of the rod cross section S, and P is the magnitude of the force P. 

In variables (1.1), the stability equation of the rod has the form [1] 

+ Pw" = 0 (1.2) 

(the prime denotes differentiation with respect to the x coordinate). For clarity, we take the boundary 
conditions 

w'(O) = (Ew")'(O) = w(1) = Ew"(1) = 0, (1.3) 

which give the eigenfunction describing the deflection w(x) of a simply supported rod of double length for the 
case of a symmetrical buckling shape. 

At the internal boundaries xi E (0,1) between the layers of the rod, where Young's moduli of the 
materials have discontinuities, the coupling conditions are to be specified: the continuity of deflection w, slope 
w I, bending moment M = - E w " ,  and shear force Q = - (Ew") ' .  

We introduce the piecewise-constant function 

ry(x) -" {Otj; X e [Xj, Xj-I-1), j = 1 , . . . , n} ,  x, = 0, Zn+, = 1, (1.4) 
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Fig. 1 

which characterizes the structure of a transversely layered rod, namely, the number, dimensions, and materials 
of the layers forming the rod. The values of aj  belong to a discrete finite set 

U = {1,2, . . . ,k},  (1.5) 

which corresponds to the given set of materials W. Thus, all the characteristics of materials from the set W 
are functions of distribution a(x) on the interval [0, 1]. If a i = i, the j th  layer [xi, Xj+l) of the rod consists 
of the ith material from W. The function a(x) is taken to be the control in the problem considered. 

The problem of optimal design is formulated as follows. From the piecewise-constant functions a(x) 
(1.4) having a set of values U (1.5), we need to find a control a(x) that contributes minimally to the weight 
functional 

1 

F(a) = / p(a) dx (1.6) 
0 

with the specified constraint imposed on the critical buckling load 

P0 - P ~< 0, (1.7) 

where P0 is a specified parameter. 
2. Necessary  Op t ima l i ty  Condi t ions .  To obtain the necessary optimality conditions for problem 

(1.2)-(1.7), we should construct expressions for variations in the goal functional (1.6) and constraint (1.7) 
through variation in the control a(z). 

The coupling conditions at the internal boundaries between the layers of the rod enable us to introduce 
the following continuous phase variables on the interval [0, 1]: 

Y(x) = (w, w', M, Q)t (2.1) 

(t is the transpose of a matrix or vector). 
Now the initial problem (1.2), (1.3) can be presented as a boundary-value problem for the desired 

Y(x): 

Y'(z)  = A(a, x)Y(x) (2.2) 

y2(0) = y4(0) = yl(1) = y3(1) = 0, (2.3) 

where the nonzero coefficients adi of the matrix A(a, x) have the form 

a 1 2 = a 3 4 = l ,  a 2 s = - l / E ,  a43=-P/E. 

Let a(x) be the optimal control from the admissible set (1.5) which minimizes the functional (1.6) and 
satisfies the constraint (1.7). We consider the perturbed control a*(x) [2]: 

f g(x), = e D, e U, a * ( x )  (2.4) / a(x), x ~ D ,  m e s ( D ) < e  

where D C [0, 1] is a set of small measure and e > 0 is a small parameter. The variation of the goal functional 
(1.6) takes the form 

,IF(a) = / { p ( a * )  - p(a)} dx. 
D 
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To obtain a variation of the constraint (1.7), we express the value of the critical load P in terms of the phase 
variables Y(x) and the control a(x). Taking the boundary conditions (2.3) into account, from system (2.2) 
we obtain 

1 1 

/ i  yi<zx. (2.6) 
0 - - 0  

Bearing in mind expression (2.6), we write the constraint (1.7) in the form 

Fi(c~,Y) = P0 - P((~,Y) ~ 0. (2.7) 

Using the standard technique [2], one can obtain the principal part of the increment of the functional FI(~, Y) 
(2.7): 

,bFI(c~,Y)=-~P(c~,Y)= y E(~*) 
D 

Now we construct the enhanced functional 

1 

--O 

(2.s) 

J((~) = F(~) -t- ~{FI(c~,Y) -t- ~2} (2.9) 

(~ and ~ are the Lagrangian multiplier and the slack variable). The variation of the functional (2.9) and 
expressions (2.5) and (2.8) can be combined to give 

6J(a)  = / { H ( a , x , Y )  - H(a* ,x ,Y) )  dx § 2 ~ .  ~ ,  (2.10) 
D 

2 1 / [ 
= - -P(") -  (2.11) 

Since the control a(x) is optimal (minimizing), the condition 6J(a) >1 0 must be satisfied for any 
admissible function a*(z) (2.4). From expression (2.10), by virtue of the arbitrariness of the variation 6~ we 
obtain conditions for the supplemented nonrigidity and sign matching [3] 

)~(Po-P(a,Y))=O (~/> 0), (2.12) 

and by virtue of the fact that the small-measure set D can be closely arranged almost everywhere in the 
interval [0, 1], the following condition of maximum for the Hamilton function H(a,  z, Y) with respect to the 
argument a [2] must be satisfied for almost all values of x E [0,1]: 

H(a,x,Y)= max H(a*,x,Y). (2.13) 
~*(z)eu 

Thus, the control a(x) and the corresponding optimal trajectory Y(x) must satisfy the boundary-value 
problem (2.2) and (2.3), relations (1.5), (2.7), and (2.12), and the optimality condition (2.13). 

3. Computa t iona l  Algor i thm.  The method of solving the proble m of optimal design consists of 
constructing a sequence of controls i s ( z ) } / ( j  = 1, 2, . . . )  which minimizes the goal functional (1.6). To this 
end we use a uniform grid {xi) to divide the interval [0, 1] into a set of intervals Di (i -- 1 , . . . ,  n) modeling 
sets of small measure. We specify the initial control a(x) from the admissible region (1.5), (2.7). The function 
a(x) is a piecewise-constant function with constancy regions Di = [xi, Xi+l) ,  where it takes values belonging 
to the set U (1.5). The next approximation a*(x) on a certain set D C {Di} is sought in the form (2.4) 

)" ai, x E D ,  a i e v ,  (3.1) 
[ a(x),  z • D 

and is determined from the following linearized optimization problem: find, on a given set D, a perturbation a i 
of the control a(x) that ensures the minimum of the variation 6F(a) (2.5) with condition (3.1) and linearized 
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TABLE 1 

Material p 
Spheroplastic 0.65 
Duralumin 2.85 
Titanium alloy 4.6 
Steel 7.8 
Copper 8.93 

E 
270 

7100 
12,000 
21,000 
11,200 

constraint (2.7) 

FI (a* ,Y + 5Y) ~ FI (a ,Y)  + diFl(a,Y) <~ 0; 

with allowance for (2.8), the latter can be written in the form 

Y~ 
1 

f P0) f yl dx dx. E---(-~dz <~ ( P ( a , Y ) -  o + 0 E- -~  f y] J. 
As a set D, one can take the elementary intervals Di themselves and a combination of several intervals 

from the set {Di} on different parts of the rod. The variation in the control a(x) on several elementary 
intervals simultaneously can be helpful to avoid a deadlock [2], when, not being optimal, a structure cannot 
be refined by local variation in the control only at one of the elementary intervals. 

Having constructed the new control a*(x) in this fashion, we take it as the initial control and construct 
the next approximation. The process is considered to be finished on a given grid if the control a(z) does not 
vary for any set D C {Di}. This solution is a local minimum in the problem considered. 

E x a m p l e .  We suppose that the set W consists of five materials, whose nondimensional densities and 
Young's moduli are given in Table 1. 

The rod is compressed by the axial force P on which the constraint P />  P0 = 18,000 is imposed. The 
boundary conditions (1.3) are specified at the rod's ends. The rod is divided along its length into 50 equal 
parts modeling the sets {Di}. 

Calculations were performed using various initial approximations, which were chosen on the basis of 
numerical calculations and some notions. As a result, a three-layered rod of weight F* = 2.814 was obtained 
with critical load P - 18,219 and the layers of titanium alloy, duralumin, and spheroplastic on the intervals 
[0, 0.08], [0.08, 0.92], and [0.92, 1], respectively. The lightest homogeneous rod which satisfies the constraint 
(2.7) is that of titanium alloy with weight F.  = 4.6. The relative gain in weight for the optimal rod in 
comparison with a homogeneous rod is (1 - F*/F.). 100% = 38.8%. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No 96-01- 
01527). 
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